从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )A. 108种B. 186种C. 216种D. 270种
问题描述:
从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )
A. 108种
B. 186种
C. 216种
D. 270种
答
从4名男生和3名女生中选出3人,分别从事三项不同的工作,有A73种选法,
其中只选派男生的方案数为A43,
分析可得,“这3人中至少有1名女生”与“只选派男生”为对立事件,
则这3人中至少有1名女生等于从全部方案中减去只选派男生的方案数,
即合理的选派方案共有A73-A43=186种,
故选B.
答案解析:分析可得,“这3人中至少有1名女生”与“只选派男生”为对立事件,即则这3人中至少有1名女生等于从全部方案中减去只选派男生的方案数,由排列的方法计算全部方案与只选派男生的方案数,计算可得答案.
考试点:排列、组合及简单计数问题.
知识点:本题考查排列的运用,出现最多、至少一类问题时,常见的方法是间接法.