y=sin·x^2·lnx,则y’’|x=1 等于
问题描述:
y=sin·x^2·lnx,则y’’|x=1 等于
答
y'=cosx*x^2*lnx+sinx*2x*lnx+sinx*x^2*1/x=cosx*x^2*lnx+sinx*2x*lnx+sinx*xy''=-sinx*x^2*lnx+cos*2x*lnx+cosx*x^2*1/x+cosx*2x*lnx+sinx*2*lnx+sinx*2x*1/x+cosx*x+sinx=-sinx*x^2*lnx+4cosx*x*lnx+2sinx*lnx+2co...答案是4cos1-sin1嗯,题目抄错了!y=sin·x^2·lnx你这几个点,算乘法符号?如果是的话,SIN后面该有东西,如果是sinx^2·lnx,那么你抄错了,还是我抄错了?我照着书上打的...如果是sinx^2·lnx,那还要简洁点:y'=cosx^2*2x*lnx+sinx^2*1/xy''=-sinx^2*2x*2x*lnx+cosx^2*2*lnx+cosx^2*2x*1/x+cosx^2*2x*1/x+sinx^2*(-1/x^2)y''(x=1)=4cos1-sin1