将一个棱长40厘米的正方体木料加工成一个最大的圆柱体,这块正方体木料的利用率是______.
问题描述:
将一个棱长40厘米的正方体木料加工成一个最大的圆柱体,这块正方体木料的利用率是______.
答
正方体的体积是:40×40×40=64000(立方厘米),
圆柱的体积是:3.14×(40÷2)2×40,
=3.14×400×40,
=50240(立方厘米),
50240÷64000×100%=78.5%,
答:这块正方体木料的利用率是78.5%.
故答案为:78.5%.
答案解析:根据题意可知,把正方体削成一个最大的圆柱,这个圆柱的底面直径和高都等于正方体的棱长,根据正方体的体积公式:v=a3,圆柱的体积公式:v=sh,用圆柱的体积除以正方体的体积,再乘100%就是这个正方体木料的利用率.
考试点:圆柱的侧面积、表面积和体积;百分数的实际应用.
知识点:此题考查正方体和圆柱的体积公式的计算应用,解答此题的关键是根据正方体内最大的圆柱的特点得出圆柱的底面直径和高都等于正方体的棱长.