已知F1、F2分别为双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P使得|PF2|2|PF1|=8a,则双曲线的离心率的取值范围是______.

问题描述:

已知F1、F2分别为双曲线

x 2
a 2
y 2
b 2
=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P使得
|PF2|2
|PF1|
=8a,则双曲线的离心率的取值范围是______.

∵P为双曲线左支上一点,∴|PF1|-|PF2|=-2a,∴|PF2|=|PF1|+2a,①又|PF2|2|PF1|=8a,②∴由①②可得,|PF1|=2a,|PF2|=4a.∴|PF1|+|PF2|≥|F1F2|,即2a+4a≥2c,∴ca≤3,③又|PF1|+|F1F2|>|PF2|,∴2a+2c>4a,...
答案解析:依题意,双曲线左支上存在一点P使得

|PF2|2
|PF1|
=8a,|PF1|-|PF2|=-2a,可求得,|PF1|=2a,|PF2|=4a,再利用|PF1|、|F1F2|、|PF2|之间的关系即可求得双曲线的离心率的取值范围.
考试点:双曲线的简单性质.

知识点:本题考查双曲线的简单性质,依题意求得|PF1|=4a,|PF2|=2a是基础,利用|PF1|、|F1F2|、|PF2|之间的三角关系得到关于a,c的不等式组是关键,也是难点,考查分析问题、解决问题的能力,属于中档题.