复平面上四点共圆的充要条件证明:复平面上z1,z2,z3,z4四点共圆的充要条件是:(z3-z1)/(z4-z1)=a(z3-z2)/(z4-z2)

问题描述:

复平面上四点共圆的充要条件
证明:复平面上z1,z2,z3,z4四点共圆的充要条件是:(z3-z1)/(z4-z1)=a(z3-z2)/(z4-z2)

设复数z1到z4的末端对应的点为A到D.(z3-z1)/(z4-z1) 的辐角表示的是AD到AC旋转的角度.即(z3-z1)/(z4-z1) 表示辐角为角DAC的一个复数.(逆时针为正,顺时针为负)同理(z3-z2)/(z4-z2) 表示辐角为角DBC的一个复数.它们...