矩阵的乘法,矩阵的幂,矩阵的可交换.书本上说,只有A,B是可交换的时候,才有(A-B)(A+B)=A^2-B^2,(AB)^K=A^K*B^K,这是为什么啊,应该怎么理解啊,万分感激,

问题描述:

矩阵的乘法,矩阵的幂,矩阵的可交换.
书本上说,只有A,B是可交换的时候,才有(A-B)(A+B)=A^2-B^2,(AB)^K=A^K*B^K,这是为什么啊,应该怎么理解啊,万分感激,

A,B可交换,即满足:A·B=B·A
这时候在做乘法运算的时候,可以应用成法律,如(A-B)(A+B)=A^2-B^2
否则,不能应用。

(A-B)(A+B)=AA+AB-BA-BB当AB=BA时,AB-BA=0,所以这时,(A-B)(A+B)=AA+AB-BA-BB=A^2-B^2以k=3为例说明下一个情况,这个不但要求交换律,还得有结合律才行.先结合,后交换:(AB)^3=(AB)(AB)(AB)=A(BA)(BA)B=A(AB)(AB)...