∫上限3 下限1(3x∧2-x+1)dx ∫上2 下1 (x∧2+1/x∧4)dx ∫上9 下4 根号x(1+根号x)dx 求定积分
问题描述:
∫上限3 下限1(3x∧2-x+1)dx ∫上2 下1 (x∧2+1/x∧4)dx ∫上9 下4 根号x(1+根号x)dx 求定积分
答
求定积分:
(1).【1,3】∫(3x²-x+1)dx=(x³-x²+x)∣【1,3】=(27-9+3)-(1-1+1)=20
(2).【1,2】∫[(x²+1)/x⁴]dx=【1,2】∫[(1/x²)dx+【1,2】∫(1/x⁴)dx=[-(1/x)-1/(3x³)]∣【1,2】
=[-(1/2)-(1/24)]-[-1-(1/3)]=-13/24+4/3=19/24.
(3).【4,9】∫(√x)(1+√x)]dx=【4,9】∫[(√x)+x]dx=[(2/3)x^(3/2)+(1/2)x²]∣【4,9】
=[(2/3)×27+81/2]-[(2/3)×8+8]=18+(81/2)-40/3=18+163/6=271/6.