【大学物理运动学】物体所受外力,是随速度变化而变化的变量,现在用时间的函数来表示速度,一个下落的液滴质量为m.空气阻力F=6πrεv.其中r是液滴半径,ε是空气粘滞系数,v是液滴速度.现在用时间函数来表示速度?其实我也做到子寒冰的那一步,但是这个微分方程解起来有点麻烦,还烦请告诉我有何技巧?

问题描述:

【大学物理运动学】物体所受外力,是随速度变化而变化的变量,现在用时间的函数来表示速度,
一个下落的液滴质量为m.空气阻力F=6πrεv.其中r是液滴半径,ε是空气粘滞系数,v是液滴速度.现在用时间函数来表示速度?
其实我也做到子寒冰的那一步,但是这个微分方程解起来有点麻烦,还烦请告诉我有何技巧?

告诉你方法吧先求出加速度ama=mg-F加速度就是速度对时间t的微分所以ma=mdv/dt=(mg- 6πrεv) 初始条件是v(0)=0m/s解这个关于v的一阶微分方程就可以求出来了为了书写简单,设k=6πrε mdv/dt=mg-kv∫dv/(mg-kv)=∫dt/m...