设abc=1,求(ab+a+1分之a )+( bc+b+1分之b ) + ( ac+c+1分之c)的值括号括起来的为一个分数不能再提分了!我挣分8容易的!>_
问题描述:
设abc=1,求(ab+a+1分之a )+( bc+b+1分之b ) + ( ac+c+1分之c)的值
括号括起来的为一个分数
不能再提分了!我挣分8容易的!
>_
答
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
= a/(ab+a+abc)+b/(bc+b+1)+c/(ac+c+1)
=1/(b+1+bc)+b/(bc+b+1)+c/(ac+c+1) 分子分母约去a
=(1+b)/(b+1+bc)+c/(ac+c+1)
前两项相加
=(1+b)/(b+1+bc)+c/(ac+c+abc)
同第一步
=(1+b)/(b+1+bc)+1/(a+1+ab)
约去c
=(1+b)/(b+1+bc)+abc/(a+abc+ab)
约去a
=(1+b)/(b+1+bc)+bc/(1+bc+b)
=(1+b+bc)/(1+bc+b)
=1