怎么证limt→t0g(t)=x0,limx→x0f(x)=f(x0),则limt→t0f(g(t))=f(x0)?
问题描述:
怎么证limt→t0g(t)=x0,limx→x0f(x)=f(x0),则limt→t0f(g(t))=f(x0)?
答
因f(x)连续,所以limt→t0f(g(t))=f(limt→t0g(t))=f(x0)
怎么证limt→t0g(t)=x0,limx→x0f(x)=f(x0),则limt→t0f(g(t))=f(x0)?
因f(x)连续,所以limt→t0f(g(t))=f(limt→t0g(t))=f(x0)