1/a+1/b= 4/a+b,则分式b/a+a/b
问题描述:
1/a+1/b= 4/a+b,则分式b/a+a/b
答
显然a、b都不为零
(a+b) / ab = 4 / (a+b)
(a+b)^2 = 4ab
a^2 + 2ab +b^2 = 4ab
a^2 - 2ab +b^2 = 0
(a - b)^2 = 0
a= b
分式b/a+a/b = 2
答
两边同时乘以ab(a+b)
b(a+b)+a(a+b)=4ab
化简:a^2-2ab+b^2=0
(a-b)^2=0
a=b
b/a+a/b=2