我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,己知F1,F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°,则这 一对相关曲线中椭圆的离心率是______.
问题描述:
我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,己知F1,F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°,则这 一对相关曲线中椭圆的离心率是______.
答
设F1P=m,F2P=n,F1F2=2c,由余弦定理得(2c)2=m2+n2-2mncos60°,即4c2=m2+n2-mn,设a1是椭圆的实半轴,a2是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m-n=2a2,∴m=a1+a2,n=a1-a2,将它们及离心率互为倒...
答案解析:设F1P=m,F2P=n,F1F2=2c,由余弦定理4c2=m2+n2-mn,设a1是椭圆的长半轴,a1是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m-n=2a1,由此能求出结果.
考试点:椭圆的简单性质.
知识点:本题考查双曲线和椭圆的简单性质,解题时要认真审题,注意正确理解“相关曲线”的概念.