How to integrate ...
问题描述:
How to integrate ...
x sin(x)
∫ x sinx dx
This uses integration by parts:
uv - ∫ v du
u = x
du = dx
dv = sinx
v = -cosx
Now plug in:
-xcosx + ∫ cosx dx
-xcosx + sinx + C
RT..答案都给我了 但我看不懂 ..
答
这个是让你用分部积分计算∫ x sinx dx
因为分部积分公式∫ u dv = uv - ∫ v du
所以
∫ x sinx dx
=-∫ x dcosx
=-xcosx-∫ cosx dx
=-xcosx + sinx + C