已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F、求证:BP2=PE•PF.
问题描述:
已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F、求证:BP2=PE•PF.
答
知识点:证明线段乘积式相等,常常先证比例式成立这是十分重要的方法之一,本题主要考查的是相似三角形性质的应用.
证明:连接PC,∵AB=AC,AD是中线,∴AD是△ABC的对称轴.∴PC=PB,∠PCE=∠ABP.∵CF∥AB,∴∠PFC=∠ABP(两直线平行,内错角相等),∴∠PCE=∠PFC.又∵∠CPE=∠EPC,∴△EPC∽△CPF.∴PCPE=PFPC(相似三角形...
答案解析:要证线段乘积式相等,常常先证比例式成立,要证比例式,须有三角形相似,要证三角形相似,须根据已知与图形找条件就可.
考试点:相似三角形的判定与性质.
知识点:证明线段乘积式相等,常常先证比例式成立这是十分重要的方法之一,本题主要考查的是相似三角形性质的应用.