若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2均有:︳f(x 1)-f(x2)︱成立,对于函数f(x)=㏑x+1f(x)=㏑x+1/2x∧在区间〔0,∞〕满足利普希茨条件,则常数k的最大值为什么

问题描述:

若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2均有:︳f(x 1)-f(x2)︱成立,对于函数f(x)=㏑x+1
f(x)=㏑x+1/2x∧在区间〔0,∞〕满足利普希茨条件,则常数k的最大值为什么

k≥|f(x1)-f(x2)|/|x1-x2|
|f(x1)-f(x2)|/|x1-x2|=1/√x1+√x2
只需求1/√x1+√x2的最大值就是K的最小值
显然当x1=x2=1时有最大值1/2
故k的最小值为1/2