如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0)下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是( )A. ①②B. ②③C. ②③④D. ①②④
问题描述:
如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0)下列说法:
①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2,y2)是抛物线上的两点,则y1>y2.
其中说法正确的是( )
A. ①②
B. ②③
C. ②③④
D. ①②④
答
知识点:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
∵抛物线开口向上,
∴a>0,
∵抛物线对称轴为直线x=-
=-1,b 2a
∴b=2a>0,则2a-b=0,所以②正确;
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(-5,y1)离对称轴要比点(2,y2)离对称轴要远,
∴y1>y2,所以④正确.
故选D.
答案解析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a-b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=-2时,y<0,则得到4a-2b+c<0,则可对③进行判断;通过点(-5,y1)和点(2,y2)离对称轴的远近对④进行判断.
考试点:二次函数图象与系数的关系.
知识点:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.