函数f(x)=|ax2+bx+c|(a≠0)的定义域分成两个单调区间的充要条件是

问题描述:

函数f(x)=|ax2+bx+c|(a≠0)的定义域分成两个单调区间的充要条件是

△≤0
因为△>0时,y=ax2+bx+c与x轴有交点,所以加绝对值后x轴下方的图像会翻上来,就会有四个单调区间,所以只有当△≤0时,仅有两个单调区间.