{(2+3+4)/1 -(3+4+5)/2+(4+5+6)/3-(5+6+7)/4+...+(10+11+12)/9-(11+12+13)/10}/{1-1/2+1/3-1/4+...+1/9-1/10

问题描述:

{(2+3+4)/1 -(3+4+5)/2+(4+5+6)/3-(5+6+7)/4+...+(10+11+12)/9-(11+12+13)/10}/{1-1/2+1/3-1/4+...+1/9-1/10

=6.
原式={(3+1+2+3)/1-(6+1+2+3)/2+(9+1+2+3)/3-(12+1+2+3)/4+...+(27+1+2+3)/9-(30+1+2+3)/10}/(1-1/2+1/3-1/4+...+1/9-1/10) (将分子里面的每个数提一个分母的值出来)
={[3+(1+2+3)/1]-[3+(1+2+3)/2]+[3+(1+2+3)/3]-[3+(1+2+3)/4]+...+[3+(1+2+3)/9]-[3+ (1+2+3)/10]}/(1-1/2+1/3-1/4+...+1/9-1/10)
={3-3+3-3+...+3-3+(1+2+3)(1-1/2+1/3-1/4+...+1/9-1/10)}/(1-1/2+1/3-1/4+...+1/9-1/10)
={6(1-1/2+1/3-1/4+...+1/9-1/10)}/(1-1/2+1/3-1/4+...+1/9-1/10)
=6
够详细的把.