以知2x+y+t=8,试求F(x,y,t)=5(x-y)^2+4y^2+3t^2最小值

问题描述:

以知2x+y+t=8,试求F(x,y,t)=5(x-y)^2+4y^2+3t^2最小值

有所谓的拉格朗日乘数法可以解决这个多元函数求极值问题设L(x,y,t,u)=5(x-y)^2+4y^2+3t^2 + u(2x+y+t-8)分别对x,y,t,u求偏导再令其等于0,得4个方程:L'x = 10(x-y) + 2u = 0L'y = -10(x-y) + 8y + u = 0L't = 6t + u ...