【急求】设f(x)=ex(ax2+x+1)当a=0时,是否存在实数m使不等式mx+1≥-x的平方+4x+1和2f(x)≥mx
问题描述:
【急求】设f(x)=ex(ax2+x+1)当a=0时,是否存在实数m使不等式mx+1≥-x的平方+4x+1和2f(x)≥mx
设f(x)=ex(ax2+x+1)当a=0时,是否存在实数m使不等式mx+1≥-x的平方+4x+1和2f(x)≥mx+1对任意x属于【0,正无穷)恒成立?若存在,求出m的值,若不存在,请说明理由.
答
当a=0时,f(x)=e^x*(x+1),存在实数m使不等式mx+1≥-x^2+4x+1和2f(x)≥mx+1对任意x属于[0,+∞)恒成立,x=0时上述两式都成立,x>0时变为m>=-x+4,①和m=4;下面用导数求g(x)的最小值:由g'(x)=0得x*2e^x*(x+2)-2e^x*(x+...