怎么证达布定理(积分中的那个):上积分(S)与下积分(s)分别是上和S(T)与下和是s(T)的极限

问题描述:

怎么证达布定理(积分中的那个):上积分(S)与下积分(s)分别是上和S(T)与下和是s(T)的极限

达布定理的定义:
设函数f(x)在[a,b]区间上可导,虽然导函数未必连续,但是却具有“介值性”.
简单说:若f'+(a)>0,f'-(b)0,知 lim[f(x)-f(a)]/(x-a)>0,根据极限的保号性,在a的右邻域内f(x)>f(a).
这说明f(a)不是最大值.
同理,f(b)也不是最大值.
f 的最大值只能在(a,b)内部某一点 c 处取得,c 必为极大值点,根据费马定理,f'(c)=0.
达布定理证明:
做辅助函数
g(x)=f(x)-rx
在[a,b]连续
由闭区间连续函数存在最大最小值
则存在c∈[a,b]有g(c)是最值
由费马定理
g'(c)=0

f'(c)=r