求曲线; x=acos^3Θ:y=asin^3Θ ,在Θ=π/6时的切线方程,法线方程,
问题描述:
求曲线; x=acos^3Θ:y=asin^3Θ ,在Θ=π/6时的切线方程,法线方程,
答
dy/dx=(dy/dΘ)/(dx/dΘ)=(3asin^2ΘcosΘ)/(-3acos^2ΘsinΘ)=-tanΘdy(π/6)/dx=-根号3/3x(π/6)=3a根号3/8 y(π/6)=a/8切线方程:y-a/8=-根号3/3*(x-3a根号3/8)y=-根号3/3*x+a/2法线方程:y-a/8=根号3*(x-3a根号3...