反三角函数2个问题,急求1:tan(arctan1/5+arctan3)2:cos【2arctan(3/4)】都是求值
问题描述:
反三角函数2个问题,急求
1:tan(arctan1/5+arctan3)
2:cos【2arctan(3/4)】
都是求值
答
设a=arctan1/5,b=arctan3
则tana=1/5,tanb=3
tan(arctan1/5+arctan3)
=tan(a+b)
=(tana+tanb)/(1-tanatanb)
=(1/5+3)/(1-1/5×3)
=8
设a=arctan3/4,则tana=3/4
所以cos²a=1/(1+tan²a)=16/25
所以cos[2arctan(3/4)]
=cos2a
=2cos²a-1
=2×16/25-1
=7/25
答
tan(arctan1/5 + arctan3)
=(tan(arctan1) + tan(arctan3)) /( 1-tan(arctan1/5) tan(arctan3))
=(1/5+3) / (1-1/5*3)
=8
2注意:勾3股4弦5
arctan(3/4)=arccos(4/根号(3*3+4*4))=arccos(4/5)……(1)
arctan(3/4)=arcsin(3/5)……………………………………(2)
cos[2archtan(3/4)]=cos[archtan(3/4)]*cos[archtan(3/4)]-sin[archtan(3/4)]*sin[archtan(3/4)]………………(3)
将(1)和(2)代入(3)即得到结果.