若limx→∞[(x²+1)/(x+1)-ax-b]=0,求a、b
问题描述:
若limx→∞[(x²+1)/(x+1)-ax-b]=0,求a、b
答
∵lim(x->∞)[(x²+1)/(x+1)-ax-b]=lim(x->∞)[((1-a)x²-(a+b)x+(1-b))/(x+1)]=0
∴有1-a=0.........(1)
且lim(x->∞)[(-(a+b)x+(1-b))/(x+1)]=0
==>lim(x->∞)[(-(a+b)+(1-b)/x)/(1+1/x)]=0
==>(-(a+b)+0)/(1+0)=0
∴有a+b=0.........(2)
解方程组(1)与(2),得a=1,b=-1
故a=1,b=-1。
答
将(x²+1)/(x+1)-ax-b通分得((1-a)x²-(a+b)x-b+1)/(x+1)
因为求极限的结果是0,所以1次项和二次项都必须为0,这样分子才是比分母低阶.故a=1,b=-1