某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x分钟,甲、乙两种的费用分别为y1和y2元.(1)试分别写出y1、y2与x之间的函数关系式;(2)在同一坐标系中画出y1、y2的图象;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?

问题描述:

某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x分钟,甲、乙两种的费用分别为y1和y2元.

(1)试分别写出y1、y2与x之间的函数关系式;
(2)在同一坐标系中画出y1、y2的图象;
(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?

(1)y1=0.3x+15(x≥0)(2分)y2=0.6x(x≥0)(4分)(2)如图:(50,30)(6分)(3)解法(一)由图象知:当一个月通话时间为(50分)钟时,两种业务一样优惠(7分)当一个月通话时间少于(50分)钟时,乙种业...
答案解析:甲种缴月租,属于一次函数关系;乙种不缴月租,是正比例函数.(3)属于方案选择问题,因一个月通话时间没有确定,而两种通信业务的费用都与通话时间有关,因此需要进行讨论,可观察图象得出结论,也可按①y1<y2,②y1=y2,③y1>y2进行求解.
考试点:一次函数的应用.
知识点:此题主要考查一次函数及应用、图象的画法,并体现了分类讨论思想.