一张纸最多可以对折几次
一张纸最多可以对折几次
有人曾拿50米长的长条新闻纸进行对折,最多折了10次,而用1000米长的长条新闻纸,最多折了11次。
据说,创折纸次数世界纪录的是个美国人——这个美国人用4公里长的厕纸进行对折,结果折了13次。
一张纸最多折不过九次
因为折到第9次层数达到512层
等着看球赛,无意中看到“海哥在线”的一句话,发现有点意思。于是做了一个实验。发现一个很意外且有趣的现象。那就是一张纸对折,最多能折几次?无论什么材料的纸,无论纸有多大,也无论纸有多薄,你最多能折几次呢?当然不能裁纸或者借助外力,也不是折了再拆拆了再折的反复动作。
赶快动手吧,随便找一张纸试试看。
试试看,你会发现一个奇妙的现象。哲学上是无穷次,而你实际能折多少次呢? 从物理上分析应该是有限次,要看你纸的大小,材料。 假设纸张厚度为0.1mm,对折9次后,纸张的厚度51.2mm,10次是102.4mm,就折不动了 。不可能无限的折叠,因为假设纸张厚度为0.1mm,对折9次后,纸张的厚51.2mm,10次是102.4mm,11次是204.8mm,已经不可能从真正意义上说折动了。 如果是非常大,非常薄的纸,也不超过9次,折九次时后纸的总厚度是单张的512倍。如果理论上能折50次,总厚度就是原厚度的2的50次方....吓人哪,若原厚度是0.045mm,那么总厚度约是4500公里,信吗?不信,你自己算算。
折一次等于原纸厚度的两倍。一张0.01毫米厚的纸,对折30次后比珠穆朗玛峰还高(10737.41824米)。但你只能折七八次,其中的原因你想想就知道了。假设厚度是0。1毫米,那么42次就相当于地球到月亮的距离了,380000千米 。
如果那“一张纸”是指通常见的A4左右大小的普通书写纸,而“折”是指类似通常手工操作的对折,折九次时后纸的总厚度是单张的512倍,也就是这时的厚度远大于宽度(宽度已经变成原来的512分之1),那由于这“纸”的材料力学的弯曲和弹性等的特性,在不破坏(撕裂)的条件下是无法做到的。
所以,看完这个你算长知识了,那就是一张纸最多能折9次!
不可能超过八次,这是一个谜题。
9次,可以试一试,不会超过9次
这是一个数学问题。一张无论多大的纸,不论你如何对折都不会超过七次。
记得高中时老师讲过这道题,好像是说,如果能把纸对折七次的话,那他的厚度会达到一个和它自身相比惊人的值,而这个值在理论上能实现,在现实中却是不可能的。因此一张纸是不可能对着超过七次的。
以下是网上找的资料 。
我记得在电视上看到过,如果是借助人的力量,最多只能折8次
.
机器也只能折9次
算算就知道了。如果纸的厚度达到了折叠面的一半就很难折叠了,由此可以推算,如果纸为正方形,边长为a,厚度为h,当折叠一次的时候,折叠边长不变,厚度为2倍的h,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4倍的h,就这也折叠下去,可以推出一个公式:当折叠次数n为偶数次时,折叠边长为l/(2^(0.5*n)),厚度变为2^n*h,当满足n>2/3*(log2(l/h)-1)时无法折叠。根据一般的纸张的状况,厚度大约为0.1mm,边长为1m时,根据以上公式,可以得出n>8.1918时无法折叠,这意味着对于厚度大约为0.1mm,边长为1m的正方形纸,只能折叠8次。在考虑一下更大的纸,厚度不变,边长为1Km时,根据以上的公式,可以得出n>14.8357时无法折叠,即只能折叠14次。因此,对于能折几次与l/h的值有关,如果l/h为无限大,它的对数也为无限大,自然可折叠的次数也为无限大。当然这些都是从理论上得出的结论,至于如此大的纸是否可折,以及如何折就无法论证了。
最后一个问题,如果把一张1mm的纸折100次,可以算一下它的厚度2^100*0.001m=1267650600228229401496703205.376m=1.267e+27m,月球到地球的距离为40万公里左右,粗略为4e+8m,因此远远的超过了月地距离。
从理论上讲,如果纸张的厚度为零,可以进行无数次对折,但是,由于纸张实际厚度的存在,这种理论也就不存在,因为对折后纸张的宽度不能小于等于纸张的厚度,也就是说一张厚度为1mm的纸,对折后纸张的宽度应大于1mm。
所以,一张纸最多能对折多少次实际是一个变数,它取决于纸张的实际厚度与大小。把一张厚度为1mm的纸对折100次,其厚度可以超过地球至月球的距离也只是一个不切合实际的数学理论推理数字。
按实际测算,新板大原始纸张的大小是840mm×1188mm(大一开),也就是16张A4纸大小,如果设纸张厚度为1mm,其对折1次的大小应该是840mm×593.5mm(其中0.5mm是对折边损失),对折两次的实际大小是593.5mm×419.5mm,对折三次的大小就是295.75mm×419.5mm,也就是说每次对折后的实际大小都要减去对折边的厚度损失,(当然,如果不是对折,而是裁开的话这个损失就可不计算在内了)对折四次后纸张的大小应该是207.75×295.75,从理论上推算,当纸张折到第十六次的时候(不计对折边损失)大小应该是3.28125mm×3.330625mm,但是,如果计算对折损失,只能折到第十二次
9次,可以试试
世界纪录7次."学生的作业本每张一般不会超过0.08mm," 我们假设一张纸厚0.01mm,开始折叠.每折一次厚度就翻一倍.所以折N次后纸的厚度为:0.01mm* 2的n次方.如果折九次的话,纸的厚度约为:10.24mm约为一厘米.近似的,可...
一般纸张也就7-9次,如果要折20次,需要的纸的长度大约为地球周长15倍的纸,只要足够大,没有不可能