证明:若a,b,c都是奇数,则二次方程ax^2+bx+c=0没有有理数根它的解答的前两步是这样的:设方程有一个有理数根 (m, n 是互质的整数).那么a(m/n )2+b(m/n )+c=0, 即an2+bmn+cm2=0. 最后一步是怎样得到的呢?~帮忙解答一下 O(∩_∩)O谢谢!~第一句话是“设方程有一个有理数根m/n

问题描述:

证明:若a,b,c都是奇数,则二次方程ax^2+bx+c=0没有有理数根
它的解答的前两步是这样的:设方程有一个有理数根 (m, n 是互质的整数).
那么a(m/n )2+b(m/n )+c=0, 即an2+bmn+cm2=0. 最后一步是怎样得到的呢?~帮忙解答一下 O(∩_∩)O谢谢!~
第一句话是“设方程有一个有理数根m/n