泰勒公式展开式 在0点的展开式不就是 f(x)=f(x0)+f'(x0)(x-x0)+...Fn(x0)/n!(x-x0)n次方 为什么我用ln(1+x) 展开到4次吧从0次展开 0次等于 01阶展开等于 x-x0/1+x x0=0 所以等于x2阶展开等于 2阶就不知道怎么展开了 不是应该 ln(1+x)求两次导 然后乘以(x-x0) x0=0 2阶展开不就是f''(x0)(x-x0)平方 为什么我算f''(x0) 是等于-1呢 为什么等于-2?
问题描述:
泰勒公式展开式 在0点的展开式不就是 f(x)=f(x0)+f'(x0)(x-x0)+...Fn(x0)/n!(x-x0)n次方
为什么我用ln(1+x) 展开到4次吧
从0次展开 0次等于 0
1阶展开等于 x-x0/1+x x0=0 所以等于x
2阶展开等于 2阶就不知道怎么展开了 不是应该 ln(1+x)求两次导 然后乘以(x-x0) x0=0
2阶展开不就是f''(x0)(x-x0)平方 为什么我算f''(x0) 是等于-1呢 为什么等于-2?
答