已知abcd为实数,M=4(a-b)(c-d)N=(a-b)(c-b) (d-a)(c-b) (c-d)(c-b) (a-b)(a-d),比已知a,b,c,d∈R,M=4(a-b)(c-d),N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d),则比较大小M________N.
问题描述:
已知abcd为实数,M=4(a-b)(c-d)N=(a-b)(c-b) (d-a)(c-b) (c-d)(c-b) (a-b)(a-d),比
已知
a,b,c,d∈R,
M=4(a-b)(c-d),N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d),则比较大小M________N.
答
已知a,b,c,d∈R,M=4(a-b)(c-d),N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d),则比较大小:M________N.N=(a-b)(c-b)+(d-a)(d-c)+(c-d)(c-b)+(a-b)(a-d)=(a-b)(c-b+a-d)+(c-d)(c-b+a-d)=(c-b+a-d)(a-b+c-d)=(a+c-b-...