基本不等式解题时,除了求最值,什么时候要求左右一方为定值求最值问题,一定要求左右一方为定值,但看如下一题a,b均为整数,且有ab-a-b=1 求a+b最小值我的解法:依题意:ab=a+b+1a+b≥2√ab=2√(a+b+1)当且仅当a=b是等号成立故令t=a+b,则有t≥2√(t+1)得t^2≥4t+4解得t≤2-2√2 或t≥2+2√2∵t=a+b>0∴t≥2+2√2当且仅当a=b=1+√2是等号成立我去问老师,他也说这样的思路可以,但我忘了问这个问题---在这个解法中a+b不是定值,为什么也可以用到均值不等式?什么时候可以在两端都不是定值的时候用均值不等式?,要求左右一方为定值的本质意义在于哪里?不要答非所问哦,不要替我想我要问什么哦,仔细看下问题题目的"整数"改为"正数"打错了

问题描述:

基本不等式解题时,除了求最值,什么时候要求左右一方为定值
求最值问题,一定要求左右一方为定值,但看如下一题
a,b均为整数,且有ab-a-b=1 求a+b最小值
我的解法
:依题意:ab=a+b+1
a+b≥2√ab=2√(a+b+1)
当且仅当a=b是等号成立
故令t=a+b,则有
t≥2√(t+1)
得t^2≥4t+4
解得t≤2-2√2 或t≥2+2√2
∵t=a+b>0
∴t≥2+2√2
当且仅当a=b=1+√2是等号成立
我去问老师,他也说这样的思路可以,但我忘了问这个问题---在这个解法中a+b不是定值,为什么也可以用到均值不等式?什么时候可以在两端都不是定值的时候用均值不等式?,要求左右一方为定值的本质意义在于哪里?
不要答非所问哦,不要替我想我要问什么哦,仔细看下问题
题目的"整数"改为"正数"打错了