对数指数求解log(10)[4x]=e^(2ln3)求X
问题描述:
对数指数求解
log(10)[4x]=e^(2ln3)
求X
答
0.25x10^9
答
log(10) [4x] = e^(2ln3)
= e^(ln9)
= 9
4x = 10^9
x = [10^9]/4