函数f(x)等于sinxcosx(x-4分之pai)+sin(2分之pai+x)sin(x-4分之pai)的图像关于什么对称(答案是x=8 分之3pai)
问题描述:
函数f(x)等于sinxcosx(x-4分之pai)+sin(2分之pai+x)sin(x-4分之p
ai)的图像关于什么对称(答案是x=8 分之3pai)
答
由诱导公式先进行化简得
原式=sinxcos(x-π∕4)+cosxsin(x-π∕4)
=sin(2x -π∕4)
此图像由y=sin2x向右平移π∕8得到
y=sin2x关于x=π∕4+kπ∕2(K∈Z)对称
∴原函数关于x=3π∕8+kπ∕2(K∈Z)
答
f(x)=sinxcos(x-π/4)+sin(π/2+x)sin(x-π/4)
=sinx(cosxcosπ/4+sinxsinπ/4)+cosx(sinxcosπ/4-cosxsinπ/4)
=sinx[(√2/2)cosx+(√2/2)sinx]+cosx[(√2/2)sinx-(√2/2)cosx]
=√2sinxcosx-(√2/2)[(cosx)^2-(sinx)^2]
=(√2/2)sin2x-(√2/2)cos2x
=sin2xcosπ/4-cos2xsinπ/4
=sin(2x-π/4)
2x-π/4=kπ+π/2,则对称轴为x=kπ/2+3π/8
当k=0时,对称轴为x=3π/8
.