limx趋近于1(根号(x+3)-2)/(根号x-1)

问题描述:

limx趋近于1(根号(x+3)-2)/(根号x-1)

令x-1=t
limx趋近于+0(根号(t+4)-2)/(根号t)
=limx趋近于+0(根号(1+t/4)-1)/(根号t/4)
令t/4=tana平方
=lima趋近于+0(1/cosa-1)/tana
=lima趋近于+0(1-cosa)/sina
=lima趋近于+0(2sina/2平方)/2sina/2cosa/2
=0

lim(x→1)(√(x+3)-2)/(√x-1)(分子有理化,分母有理化得)
=lim(x→1)(√(x+3)-2)(√(x+3)+2)(√x+1)/[(√x-1))(√(x+3)+2)(√x+1)]
=lim(x→1)(√x+1)/(√(x+3)+2)
=1/2