若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋
问题描述:
若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋
答
lim_{x→+∞}f(x)=lim_{x→+∞}f(x)e^x/e^x
由f(x)e^x的导数为(f(x)+f'(x))e^x,而e^x的导数为e^x;利用罗比达法则,有
lim_{x→+∞}f(x)e^x/e^x=lim_{x→+∞}[(f(x)+f'(x))e^x]/e^x=lim_{x→+∞}f(x)+f'(x)=0
于是lim_{x→+∞}f(x)=0
答
?
答
lim【f(x)+f(x)的导数】=0下面是x趋于+∞
f(x)=Ce^(-x)