P是三角形ABC所在平面外一点,PA、PB、PC两两相互垂直,PH垂直平面于H,求证1/PA2+1/PB2+1/PC2=1/PH2
问题描述:
P是三角形ABC所在平面外一点,PA、PB、PC两两相互垂直,PH垂直平面于H,求证1/PA2+1/PB2+1/PC2=1/PH2
答
由题意知PC、PA、PB分别垂直于PAB、PBC、PAC三个平面.连接CH,且延长交AB于D,连接PD.那么有题意知PH⊥CH,且PC⊥PD,CD和PD均⊥AB.那么有PH^2/PC^2=sin^2(角PCD)=PD^2/CD^2=HD*CD/CD^2=HD/CD=[HD*AB/2]/[CD*AB/2]=S△HA...