△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有(  )A. 1个B. 2个C. 3个D. 4个

问题描述:

△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有(  )
A. 1个
B. 2个
C. 3个
D. 4个

解;①∠A=∠B-∠C,∠A+∠B+∠C=180°,解得∠B=90°,故①是直角三角形;
②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故②不是直角三角形;
③∵a2=(b+c)(b-c),∴a2+c2=b2,符合勾股定理的逆定理,故③是直角三角形;
④∵a:b:c=5:12:13,∴a2+b2=c2,符合勾股定理的逆定理,故④是直角三角形.
能判断△ABC是直角三角形的个数有3个;
故选:C.
答案解析:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.
考试点:勾股定理的逆定理;三角形内角和定理.
知识点:本题考查了利用直角三角形的定义和勾股定理的逆定理来判定一个三角形是不是直角三角形,是判定直角三角形的常见方法.