用正弦定理判断三角形形状b+a/a=sinB/sinB-sinA且2sinAsinB=2sin^2c请判断三角形形状

问题描述:

用正弦定理判断三角形形状
b+a/a=sinB/sinB-sinA且2sinAsinB=2sin^2c
请判断三角形形状

a /sinA=b/sinB=c/sinC所以sinB/(sinB-sinA)=b/(b-a)且2sinAsinB=2sin^2c则2ab=2c²c²=ab所以(b+a)/a=b/(b-a)ab=b²-a²所以c²=b²-a²直角三角形