星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.

问题描述:

星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;
(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;
(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.

(1)设y=30-2x(6≤x<15),
(2)设矩形苗圃园的面积为S
则S=xy=x(30-2x)=-2x2+30x,
∴S=-2(x-7.5)2+112.5,
由(1)知,6≤x<15,
∴当x=7.5时,S最大值=112.5,
即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.
(3)∵这个苗圃园的面积不小于88平方米,
即-2(x-7.5)2+112.5≥88,
∴6≤x≤11.
∴x的取值范围为6≤x≤11.

(3)-2x2+30x=88
x2-15x+44=0
(x-4)(x-11)=0
x1=4 x2=11
∵X≥6
∴x1=4不合题意,舍
所以6≤x<11

⑴ y=30-2x(6≤x<15)⑵ 设矩形苗圃园的面积为S    则S=xy=x(30-2x)=﹣2x²+30x,  ∴S=﹣2(x-7.5)²+112.5,  由⑴知,6≤x<15,  ∴当x=...

(1)y=30-2x(6≤x(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x 即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤11