如图,现有正方形甲1张,正方形乙2张,长方形丙3张,请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.

问题描述:

如图,现有正方形甲1张,正方形乙2张,长方形丙3张,请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.
作业帮

作业帮 a2+3ab+2b2=(a+b)(a+2b).
答案解析:根据图示可看出大长方形是由2个边长为b的正方形,1个边长为a的小正方形和3个长为b宽为a的小长方形组成,所以用它的面积的两种求法作为相等关系即可.
考试点:
知识点:主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.解此类题目的关键是正确的分析图形,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.