已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.(1)根据题目所提供的信息,可求得b=______,a=______,m=______;(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,

问题描述:

已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.

(1)根据题目所提供的信息,可求得b=______,a=______,m=______;
(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.

(1)由图②知:从第4到第5秒时,S的值恒为12,此时矩形全部落在正方形的内部,那么矩形的面积为12,即可求得DE=4;这个过程持续了1秒,说明正方形的边长为:DE+1=5;由于矩形的速度恒定,所以5~m也应该用4秒的时间...
答案解析:(1)由图②的函数图象知:从第4-5秒,S的值恒为12,即此时矩形全部落在正方形的内部,由此可求得两个条件:①矩形的面积为12,②正方形的边长为1+DE,根据这两个条件求解即可.
(2)当0≤t≤5时,矩形在直线AB的左侧,可用t表示出AD′、PF′的长,易求得D′G、CP的长,即可用勾股定理求得AG′2、CF′2的值,即可得到y、t的函数关系式.
(3)此题要分五种情况讨论:
①当0≤t<4时,点E′在D点右侧;由于∠HG′F′、∠HF′G′都是锐角,显然直线AG′与CF′不可能平行;当两条直线垂直时,△G′HF′是直角三角形,易证得△AD′G′∽△CPF′,根据相似三角形得到的比例线段即可求得t的值;
②当t=4时,D、E′重合,此时直线DC与E′F′重合,显然此时AG′与CF′既不平行也不垂直,因为过直线外一点,有且只有一条直线与已知直线平行或垂直;
③当4<t<5时,矩形在正方形的内部,延长G′F′交BC于P,延长AG′交CD于Q,此时∠CF′P是锐角,所以∠CF′G是钝角,显然AG′与CF′不可能垂直;当两直线平行时,可证得△AD′G′∽△F′PC,进而可根据相似三角形得到的比例线段求得t的值;
④当t=5时,此种情况与②相同;
⑤当5<t<9时,此时∠QG′F′与∠CF′G′都是钝角,显然AG′与CF′不可能平行;当两直线垂直时,可延长CF′与AG′相交于点M,延长G′F′与CD相交于点P,通过证△AD′G′∽△CPF′来求得此时t的值.
考试点:矩形的性质;二次函数的最值;正方形的性质.
知识点:此题主要考查了矩形、正方形的性质,勾股定理,相似三角形的判定和性质以及分段函数的应用等知识,同时还考查了分类讨论的数学思想,难度较大.