已知三角形AOB中,|OB|=3,|OA|=4,|AB|=5,点P是三角形ABO内切圆上一点,求以|PA|、|PB|、|PO|为直径的三个圆面积之和的最大与最小值
问题描述:
已知三角形AOB中,|OB|=3,|OA|=4,|AB|=5,点P是三角形ABO内切圆上一点,求以|PA|、|PB|、|PO|为直径的三个圆面积之和的最大与最小值
答
以O为原点,OA,OB为x,y轴建立直角坐标系,且A(4,0),B(0,3)
那么三角形OAB的内切圆方程为(x-1)^2+(y-1)^2=1
以PA,PB,PC为直径的圆面积:S=π[|PA|^2+|PB|^2+|PO|^2]/4
所以只需求|PA|^2+|PB|^2+|PO|^2的最大最小值.
设P点坐标 (x,y),
【 则x,y满足:(x-1)^2+(y-1)^2=1,因为P点在圆上,有y^2-2y=-x^2+2x-1】
则 |PA|^2+|PB|^2+|PO|^2
=[(x-4)^2+y^2]+[x^2+(y-3)^2]+[x^2+y^2]
=3x^2+3y^2-8x-6y+25
=3x^2-8x+25+3(-x^2+2x-1)
=-2x+22
由于:(x-1)^2+(y-1)^2=1 所以:(x-1)^2≤1,即 0≤x≤2
所以:18≤-2x+22≤22
所以:18≤|PA|^2+|PB|^2+|PO|^2≤22
则面积的最大值:11π/2
面积的最小值:9π/2
具体过程我没有检查,应该没有错吧,你自己看看哈.
累死我了,原创就是麻烦.