已知Sn=1+(2n+3)+(4n+5)+.+【2(n-1)n+(2n-1)】则lim Sn / n的lim Sn / n³+1=?

问题描述:

已知Sn=1+(2n+3)+(4n+5)+.+【2(n-1)n+(2n-1)】则lim Sn / n的lim Sn / n³+1=?

Sn=2(1+.+(n-1))n+(1+3+.+(2n-1))
=2*n(n-1)/2*n+ [2n*(2n+1)/2-2*(n+1)n/2]
=n^3
所以limSn/(n^3+1)=1