△ABC的三条外角平分线所在的直线相交构成△DEF,那么△DEF的最大角α的取值范围是_.
问题描述:
△ABC的三条外角平分线所在的直线相交构成△DEF,那么△DEF的最大角α的取值范围是______.
答
根据角平分线定义、三角形的内角和定理以及外角的性质,得
∠D=180°-(∠1+∠2)=180°-
(∠MAC+∠ACN)=180°-1 2
(180°+∠B)=90°-1 2
∠B,1 2
同理,得∠E=90°-
∠C,∠F=90°-1 2
∠A.1 2
因为△ABC中的最小角的取值范围,即大于0°而小于等于60°,
所以△DEF的最大角α的取值范围是大于等于60°而小于90°.
故答案为60°≤α<90°.