若a,b,c,d均为有理数,且|a-b|≤9,|c-d|≤16,|a-b-c+d|=25,则|b-a|-|d-c|=_.

问题描述:

若a,b,c,d均为有理数,且|a-b|≤9,|c-d|≤16,|a-b-c+d|=25,则|b-a|-|d-c|=______.

∵|a-b|≤9,|c-d|≤16,
∴|a-b|+|c-d|≤9+16=25,
|a-b-c+d|=|(a-b)-(c-d)|=25,
∴(a-b) 与 (c-d) 符号相反,且|a-b|=9,|c-d|=16,
∴|b-a|-|d-c|=9-16=-7
故|b-a|-|d-c|=9-16=-7,
故答案为:-7.