若方程x2+mx-15=0的两根之差的绝对值是8,求m的值. _.

问题描述:

若方程x2+mx-15=0的两根之差的绝对值是8,求m的值. ______.

∵方程x2+mx-15=0的二次项系数a=1,一次项系数b=m,常数项c=-15,
∴x1+x2=-m,x1•x2=-15,
又∵方程x2+mx-15=0的两根之差的绝对值是8,
∴|x1-x2|=8,
∴(x1-x22=64,
∴(x1+x22-4x1•x2=64,
∴(-m)2-4×(-15)=64,即m2+60=64,
解得m=±2.
故答案为:m=±2.