y=根号(4x-1)+2根号(3-x)的单调减区间.
问题描述:
y=根号(4x-1)+2根号(3-x)的单调减区间.
答
由 f(x)=√(4x-1)+2√(3-x),其定义域为{x|1/4≤x≤3}.
考虑其在定义区间上的导数,由于 f‘(x)=2/√(4x-1)-1/√(3-x),
令 f‘(x)=0 解得 x=13/8 .且当 x∈[1/4,13/8)时,f'(x)>0;当x∈(13/8,3]时,f'(x)