已知F1.F2为双曲线C:x平方-y平方=1的左右焦点,点P在C上,角F1PF2=60度,则P到x轴的距离为A(根号下3)/ 2 B(根号下6)/2 C 根号下3 D根号下6请用两种方法解 可否再提供一个方法
问题描述:
已知F1.F2为双曲线C:x平方-y平方=1的左右焦点,点P在C上,角F1PF2=60度,则P到x轴的距离为
A(根号下3)/ 2 B(根号下6)/2 C 根号下3 D根号下6
请用两种方法解
可否再提供一个方法
答
PF1=p,PF2=q
有定义
|p-q|=2a=2
平方
p²+q²-2pq=4
p²+q²=2pq+4
c²=1+1=2
c=√2
所以F1F2=2c=2√2
余弦定理
cos60=1/2=(p²+q²-8)/2pq
pq=2pq+4-8
pq=4
所以三角形PF1F2面积=12pqsin60=√3
三角形底边F1F2=2√2
所以高是2√3/2√2=√6/2
所以P到x轴的距离=√6/2
选B
答
直接用过焦点面积公式,s=b^2cot(α/2),所以s=1xcot(30°)=√3因为s=1/2x(2c)xh所以h=√6/2 另外一种可以用焦半径公式来解PF1=ex+a,PF2=ex-a所以PF1=√2x+1,PF2=√2x-1所以三角形面积s=1/2*PF1*PF2*sin60°=√3*(2*x^...