已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为(  ) A.34 B.54 C.74 D.34

问题描述:

已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为(  )
A.

3
4

B.
5
4

C.
7
4

D.
3
4

过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE交SE于F,连BF,
∵正三角形ABC,
∴E为BC中点,
∵BC⊥AE,SA⊥BC,
∴BC⊥面SAE,
∴BC⊥AF,AF⊥SE,
∴AF⊥面SBC,
∵∠ABF为直线AB与面SBC所成角,由正三角形边长2,
∴AE=

3
,AS=3,
∴SE=2
3
,AF=
3
2

∴sin∠ABF=
3
4

故选D.