若(tana+1)(tanβ+1)=2,则a+β=?

问题描述:

若(tana+1)(tanβ+1)=2,则a+β=?

(tana+1)(tanβ+1)=2
展开
tanαtanβ+tanα+tanβ+1=2
tanα+tanβ=1-tanαtanβ
∴tan(α+β)
=(tanα+tanβ)/(1-tanαtanβ)
=1
∴α+β=kπ+π/4,k∈Z