已知在四边形ABCD中,AD=BC,AB=CD,AC交BD于点O,过点O的直线分别交DA,BC的延长线于P、Q,求证;AP=CQ.
问题描述:
已知在四边形ABCD中,AD=BC,AB=CD,AC交BD于点O,过点O的直线分别交DA,BC的延长线于P、Q,求证;AP=CQ.
答
证明:
因为AD=BC,AB=CD,可知四边形ABCD为平行四边形(两对边相等)
很容易知道
在三角形AOP与三角形COQ中,
OC=OA(平行四边形对角线平分)
角COQ=角AOP(对顶角)
角OQC=角OPA(平行四边形同位角)
所以两个三角形全等
所以AP=CQ